Evaluation of Grade 120 Granulated Ground Blast Furnace Slag

by

Craig Duos, P.E. John Eggers, P.E.

Louisiana Transportation Research Center 4101 Gourrier Drive Baton Rouge, Louisiana 70808

> LTRC Project No. 96-3C State Project No. 736-99-0310

> > conducted for

Louisiana Department of Transportation and Development

Louisiana Transportation Research Center

The contents of this report reflect the views of the author/principal investigator who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development or the Louisiana Transportation Research Center. This report does not constitute a standard, specification, or regulation.

June 1999

ABSTRACT

This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this evaluation with varying amounts of GGBFS used as a substitution for cement. These substitutions were a percentage by weight substitution. This study looked at the effects of slag on workability, constructability, durability and the compressive strength of the concrete. How GGBFS affected the concrete's set times was also critical in establishing the maximum substitution amount for DOTD concrete structures and pavements.

In addition, an informal telephone survey was taken with other state DOT's concerning their use and experience using GGBFS in concrete. This further assisted DOTD in the development of their own specifications for GGBFS concretes.

Test results indicate that concretes with GGBFS substitutions displayed delays in set times and exhibited delays in compressive strengths at an early age, as compared to conventional concrete mixes. However, at later ages the compressive and flexural strengths markedly surpassed those of conventional concrete mixes as the cement content increased. Permeability was greatly reduced in those concretes that incorporated GGBFS as opposed to the conventional mixes.

At this time, the use of GGBFS has already been implemented into the specifications of Louisiana concrete mixes. Conclusions from this study are to be incorporated into the specifications of Louisiana concrete mixes. Restrictions are for an allowable substitution of Grade 120 GGBFS up to 50 percent, and an ambient pouring temperature of 50°F and rising.

IMPLEMENTATION STATEMENT

At the writing of this report, the use of GGBFS has already been implemented into the specifications of Louisiana concrete mixes. A quality control program was devised and implemented by the Materials and Testing Section. Additional specifications concerning allowable substitution amounts and ambient temperature restrictions were suggested by LTRC and adopted for use on DOTD projects.

Currently there are two projects using GGBFS in their concrete mixes. The Charenton Canal Bridge (SP. 241-02-0040) has a deck containing a class AA mix design with 50 percent substitution of GGBFS concrete. The new alignment of LA 14 pavement project (SP. 055-05-0048) is using a class B concrete mix design with a 50 percent substitution of GGBFS also.

It is anticipated that the inclusion of GGBFS into DOTD concrete mix designs will have the practical values of enhancing the physical properties of concrete along with longterm economical and ecological benefits.

TABLE OF CONTENTS

ABSTRACT	iii
IMPLEMENTATION STATEMENT	vii
TABLE OF CONTENTS	ix
INTRODUCTION	1
OBJECTIVE	3
SCOPE	5
METHODOLOGY	7
DISCUSSION OF RESULTS	14
CONCLUSIONS	16
RECOMMENDATIONS	19

INTRODUCTION

Because of an increasing awareness of waste material disposal methods, particularly those waste materials that may pose environmental hazards, increasing attention has been given to providing safe and practical use of these materials. One such material is Granulated Ground Blast Furnace Slag GGBFS.

The use of GGBFS as a constituent of concrete was first recorded in 1905. GGBFS is made from iron blast furnace slag. It is non-metallic and consists essentially of silicates and aluminosilicates of calcium and other bases developed in a molten form with iron in a blast furnace. Molten slag, at a temperature of 2730° F, is rapidly chilled by quenching it in water to form a glassy sand-like granulated material. This material is then ground to less than 45 microns. The rough and angular shaped slag hydrates and sets in a manner similar to cement. This is accomplished in the presence of water and an activator, such as NaOH (sodium hydroxide) or CaOH (calcium hydroxide), supplied by cement.

To maximize the hydraulic (cementitious) properties, the molten slag must be chilled rapidly as it leaves the blast furnace. Quenching minimizes crystallization and converts the molten slag into fine aggregate sized particles (less than a #4 sieve), composed mainly of noncrystalline material. The cementitious action of GGBFS is dependent largely on the glass content. Slowly quenched slags are predominantly crystalline (non-glass) and therefore do not possess significant cementitious properties. The properties of GGBFS, therefore, are dependent on the production process.

Recently, a facility producing GGBFS was built in the New Orleans area. The manufacturer, Lone Star Cement, reports that the cost of GGBFS is less than that of

cement and that it possesses excellent cementitious properties. In addition, the use of GGBFS as a partial replacement for cement will decrease the burden on naturally occurring raw materials needed in the production of cement.

The primary concern over using GGBFS is delayed set times, and hence, delayed early strength gain. This can present a problem in the time management of sawing joints in concrete pavement. It could also present a problem in developing the necessary minimum early strengths required at the time strands are cut in prestressed members. This study addresses the amount of the delay in set time and strength gain and the effect on the time between initial and final set as compared to non-GGBFS concrete.

ASTM C 989 (Standard Specification for GGBFS for use in Concrete and Mortars), adopted in November 1982, provides for three strength grades of GGBFS depending on their mortar strengths when blended with an equal mass of portland cement. Grades 120, 100 and 80 are expressed as:

 $SAI = (SP/P \times 100)$

where:

SAI = slag-activity index, %

SP = average compressive strength of slag-reference cement mortar cubes, psi P = average compressive strength of reference cement mortar cubes, psi

This study evaluates only Grade 120 GGBFS.

OBJECTIVE

This study will determine the characteristics of paving and structural concrete made with varying amounts of GGBFS as a percentage by weight substitution. Specifically, the study focused on the effects of slag on workability, constructability, durability, and the effect of GGBFS on the compressive strength of concrete. Standard American Society for Testing and Materials (ASTM) tests and some non-ASTM tests were employed. Secondary objectives were to poll other state (DOT's) that allow the use of GGBFS to gain their experiences as it pertained to the economic and performance characteristics of GGBFS.

The ultimate objective was to determine how GGBFS affects set times and the maximum percent substitution of GGBFS in DOTD concrete structures and pavements.

SCOPE

The LTRC Concrete Laboratory was the site of the testing program. Control mixes (those containing no GGBFS) and GGBFS mixes were made and then tested using standard ASTM test procedures and one AASHTO test, the rapid chloride permeability test to determine the effect of GGBFS on permeability.

In addition, an informal telephone survey of states that have used GGBFS was undertaken (see appendix A). An inquiry into their work experiences using GGBFS proved valuable. The experience of other states and the laboratory-testing program performed at LTRC were beneficial in specification development for GGBFS.

METHODOLOGY

(TESTS)

Through a series of standard ASTM tests, LTRC evaluated the effects of GGBFS on Louisiana concrete mixtures at various substitution rates. The tests determined the properties of plastic GGBFS concrete as well as volume stability, strength, durability and workability of GGBFS concrete so that substitution rates and specifications can be developed. Additionally set times at temperatures of 40°F, 50°F, 60°F, and 73°F were examined.

The following tests were conducted:

1)	ASTM C 143	Slump of Fresh Concrete - 1 specimen							
2)	ASTM C 148	Air Content and Unit Weight - 1 specimen							
3)	ASTM C 403	Set Time of Fresh Concrete - 2 specimens							
4)	ASTM C 39	Compressive Strength - 3 specimens							
5)	ASTM C 78	Flexural Strength - 3 specimens							
6)	ASTM C 469	Static Modules of Elasticity and Poisson's Ratio							
		- 2 specimens							
7)	ASTM C 666	Resistance to Rapid Freezing and Thawing - 3 specimens							
8)	ASTM C 157	Length Change - 2 specimens							
9)	ASTM C 512-87	Creep Test of Concrete in Compression - 3 to 5 specimens							
10)	ASTM C 672-92	Standard Test Method for Scaling Resistance of Concrete							
	Surfa	aces Exposed to De-icing Chemicals - 2 specimens							
11)	ASTM C 944-90a	Standard Test Method for Abrasion Resistance of Concrete							
	or	Mortar Surfaces by the Rotating Cutter Method - 3							
	specimens								
12)	AASHTO T 227	Rapid Chloride Permeability Test - 2 specimens							

(MIX DESIGNS)

Concrete mixes conformed to DOTD Standard Specifications for Roads and Bridges and were representative of concrete used in pavement and structures in Louisiana. Both paving and structural mixes were evaluated.

(Paving Mixes)

(Reference mix:)

* Cement content: 5.4 bags of cement per cubic yard when crushed limestone is used as the coarse aggregate; 5.8 bags of cement per cubic yard when gravel is used as the coarse aggregate.

* 60/40 ratio of coarse to fine aggregate.

* Coarse aggregate gradation "B".

* water/cementitious material ratio: not to exceed 0.40.

* Use of admixtures; air entrainment and water reducers to achieve air content and slump within DOTD Standard Specifications for Roads and Bridges for each mix type.

* Same water/cementitious material ratio for similar mixes.

Slag mixes were identical to the reference mix with the exception that various percentages of cement, by weight, will be replaced with GGBFS. The percentage substitutions were 15 percent, 30 percent, and 50 percent.

(Reference mix:)

* Cement content: 6.0 bags of cement per cubic yard when crushed limestone is used as the coarse aggregate; 6.5 bags of cement per cubic yard when gravel is used as the coarse aggregate.

* water/cement ratio: not to exceed 0.45

* 60/40 ratio of coarse to fine aggregate

* Coarse aggregate gradation "A"

* Use of admixtures; air entrainment and water reducers to achieve air content and slump within DOTD Standard Specifications for Roads and Bridges for each mix type.

* Same water/cementitious material ratio for similar mixes.

Table 1 presents the test factorial used for this study. Because of the anticipated slower set times and strength development, two test temperatures were originally chosen. For this purpose, 40°F was chosen as the lower bounds temperature and 73°F as the standard. For the 40°F samples, the plan was to chill all components to 40°F before mixing and to cure the specimens at 40°F for 28 days. This plan was changed for several reasons. Temperatures do reach 40°F in Louisiana but have never stayed at that level for 28 days, as such the researcher felt that this was an unrealistic test for this region. Additionally, the space required to chill components and cure specimens at 40°F was too great; only one mix per month would have been possible. This would have delayed the study by at least one year, which was unacceptable to all concerned. Additionally, the average temperature in Louisiana for the months of November, December, January, and February is 50°F. So the decision was made to modify the study to reflect realistic temperature conditions in Louisiana. Components would be chilled to 50°F and 60°F prior to mixing and cured for seven days at that same temperature (50°F and 60°F) then allowed to cure for the remainder of the 28 days at 73°F in the 100 percent humidity room. These changes were

approved by the Project Review Committee.

One mix design, the paving mix for limestone and gravel at 70°F, will consist of 10 percent fly ash and 15 percent slag. This is to address the possibility that a fly ash hopper used for a previous pour may contain some residual fly ash. This could contaminate the GGBFS supply when it is added to the same hopper on a job requiring GGBFS. Since its not likely that the Department would allow the intentional use of both slag and fly ash in concrete until a fundamental understanding of concrete containing GGBFS only is achieved, it was prudent to determine how the two admixtures, when combined, performed in a standard DOTD concrete mix design.

All mixes, except the fly ash and slag mixes, were tested with their components having been cooled to 40° F to address the set time and strength gain delay. The combination of fly ash and slag will be tested at 70° F only. Mixes will not be made and tested at high a temperature (90° F). Based on previous experience, at higher temperatures, set time and early strength are not as negatively impacted as they are at lower temperatures.

Table 1

% SI	.AG		0,	%			15	%			30	1%			50	%	
TEMP.	Ϋ́F	40	50	60	73	40	50	60	73	40	50	60	73	40	50	60	73
5.4 BAG MIX	G R A V E L																
	S T O N E				X				X				X				X
5.8 BAG MIX	G R A V E L	X			X	X			X	X	X	X	x	x			X
	S T O N E																
6.0 BAG MIX	G R A V E L																
	S T O N E	x			x	x			x	x	X	X	X	x			x
6.5 BAG MIX	G R A V E L				X				x				X				x

s								
Т								
0								
Ν								
Е								

DISCUSSION OF RESULTS

Tested mixes consisted of a reference without slag and substitutions (slag for cement) by weight of 15 percent, 30 percent, and 50 percent. All mixing was performed at 73°F; however, for some mixes components were chilled to 40°F, 50°F, and 60°F prior to mixing and cured for seven days at one of the mentioned temperatures. As previously mentioned, the original plan was to cure at reduced temperature for 28 days, but this was unrealistic for southern conditions and the curing protocol was modified to reflect a more realistic test.

All blends met or exceeded the required compressive strength specifications and compared favorably to the reference mix in most tests performed (see appendix B). Set times were fairly consistent and can be controlled by monitoring ambient temperature at the time of placement and the percentage of GGBFS used in the concrete mix. Although no testing of set accelerating admixtures was done in the course of this study, it may be possible to decrease set times by the use of these types of admixtures. Even though permeabilities were considerably lowered, freeze thaw test (ASTM C 666 method B) results indicated that GGBFS had little or no impact on a mix's ability to resist deterioration due to freezing and thawing.

No testing above 73°F was performed, as such no information is available regarding set time or any other test parameter above the reference temperature. However, it can be expected that higher temperatures will lower the time necessary to achieve initial and final set.

The Slag Activity Index and chemical composition has remained consistent from 10/15/97 to 7/12/97 and should remain so as long as the source of slag remains constant.

14

CONCLUSIONS

The conclusions were drawn based on the limitations of the factorials used in testing grade 120 GGBFS. Laboratory results indicate that when slag is blended into the concrete mixture we can expect comparable or increased compressive strengths, lower permeability, and consistent set times (set times can be controlled with admixtures). Based on test results at 73°F, the LTRC Concrete Laboratory has no objections to the use of GGBFS from Lonestar Cement in our concrete mixes. However, it is recommended that trial batching should be required to demonstrate the compatibility of the blended materials used and a required temperature of 50°F and rising for placement. The temperature restriction is based on the delayed set at lower temperatures (See following graphs). Finally, quality control testing should be used to insure the consistency of the product.

5.8 BAG MIX: FINAL SET

6.0 BAG MIX: INITIAL SET

RECOMMENDATIONS

Based on the attached laboratory results, the LTRC Concrete Section sees no reason to restrict GGBFS and its use in our concrete mixtures, providing the existing quality control program, developed by the Materials and Testing Section, is followed and proper specification modifications are implemented.

When blended at the redi-mix plant, the substitution rate should be limited to 30 percent and a separate hopper provided for the storage of slag. Although, the results of the 50/50 cement/slag blend were good, it is recommended that mixtures with these proportions be blended at the point of origin to decrease the possibility of an error in proportioning.

Mixing of slag and fly ash or any cement containing fly ash should not be permitted. It is also suggested that trial batches be required to demonstrate the compatibility of the mix components before accepting the mix design. Additionally, during trial batching, the producer should be required to demonstrate that satisfactory set times can be achieved when slag is included in the mix design.

Only slag with a Slag Activity Index (SAI) of 120 should be allowed for use in LA DOTD concrete mixes at this time since it is the only grade tested to date. Grade (SAI) 100 will be tested in 1999-2000 for consideration of incorporation into the specifications.

The consistency and performance of GGBFS is source dependent. Lonestar Cement intergrinds materials from several sources and has a contract with each slag supplier for five years. Louisiana should require notification of any change in source material.

Appendix A COMPARISON OF USAGE OF GGBFS BY OTHER STATES

COMPARISON OF USAGE OF GGBFS BY OTHER STATE DOT'S this information was collected in 1995 and may have changed

	USE YES OR NO	NATURE OF USAGE	SUBST. RATE (%)	# YEARS	
FLORIDA	YES	STRUCTURAL	50% TO 70%	12 YEARS	
INDIANA	NO				
N. YES CAROLINA		PAVEMENT	UP TO 50%	N.A.	
GEORGIA	ALLOWED?	NOT STATED	* SEE ADD. COMM.	N.A.	
MICHIGAN	ALLOWED		UP TO 40%	N.A.	
оніо	YES	STRUCTURAL?	* SEE ADD. COMM.	2 YEARS	
NEW YORK	NO	NONE YET	TO BE DETERMINED.	0	
VIRGINIA YES		MOSTLY PAVEMENT	35 TO 50%	10 YEARS	
MARYLAND	YES	PAVEMENT AND STRUCTURES	25% TO 50%	13 YEARS	
PENN.	YES	STRUCTURES	25% TO 50%	N.A.	
MASS.	YES	ROADS AND STRUC.	UP TO 40%	N.A.	
DELAWARE	YES	ROADS AND STRUCTURES	35% TO 50%	4 YEARS	
ALABAMA	NO				
KENTUCKY	NO				
MISSOURI	NO				
MONTANA	NO				
NEW JERSEY	NO				
S. CAROLINA	YES	MAINLY STRUCTURES	UP TO 50%	8 YEARS.	

NEW HAMP.	YES	MAINLY STRUCTURES	UP TO 50%	N.A.
ILLINOIS	ALLOWED	N.A.	25%	N.A.

	SPECS DEVELOPED HOW?	ADDITIONAL COMMENTS
FLORIDA	IN HOUSE RES. AND WORK DONE BY JACKSONVILLE PORT AUTHORITY	PRIMARILY USED TO ENHANCE CORROSION RESISTANCE IN STRUCTURES; NOT USED IN PAVEMENT; ALSO USED IN COMBINATION WITH MICROSILICA AT 50% TO 55% SUBST.
INDIANA		NO WORK EXPERIENCE WITH YET; THOUGHT TO HAVE DURABILITY PROBLEMS
N. CAROLINA	N.A.	NOT USED IN HIGH EARLY STRENGTH APPLICATIONS OR COMBINED WITHIN TYPE 1P AND 1S CEMENTS. HOWEVER, EXPERIMENTAL USAGE FROM DEMO PROJECT INDICATES ACCELERATED STR. GAIN @ HIGH TEMPERATURES
GEORGIA	N.A.	SHALL MEET REQ. OF AASHTO M302, GRADE 120. NOT TO BE USED IN COMBINATION WITH FLY ASH OR TYPE 1P CEMENT. 50% SUBST. IF T > 60 DEG. F. IF 40 < T < 60, SUBST. UP TO 30%. IF T < 40, NOT PERMITTED.
MICHIGAN	N.A.	NOT USED BECAUSE IT'S CONSIDERED TOO EXPENSIVE; USE NOT ALLOWED BETWEEN OCT. & APR.
оніо	BASED ON RESULTS FROM CONSULTANT MAT. LAB	SHALL CONFORM TO ASTM 989 GRADE 100 OR 120. FROM OCT. 15 TO APR. 1, 25% SUBST. FROM APR. 1 TO OCT. 15, 40% MAX. USED TO ACHIEVE LOW-PERMEABILITY AND SHRINKAGE.
NEW YORK	N.A.	RESEARCH CURRENTLY BEING CONDUCTED FOR USE IN HIGH -PERF. CONC.
VIRGINIA	FEDERAL GUIDELINES	NOT TO BE USED WITH TYPE 1P CEMENT. USE W/TYPE II ONLY IF ALKALI > 0.40%. NO CRACKING PROBLEMS ASSOCIATED W/USE. SLAG OR F.A. SUBT. MANDATORY. SHALL CONFORM TO ASTM C989. GRADE 100 OR 200.
MARYLAND	EXPERIENCE OF OTHER	DECREASES PERMEABILITY; MITIGATES

	STATE DOT'S	ASR; CONTRACTOR MUST FURNISH TRIAL BATCH; APPROVED ON AN AS NEED BASIS JOB TO JOB; VERY FAVORABLE OPINION OF. NO CRACKING PROBLEM IN PAVEMENT BUT THEY USE CRCP. SHALL CONFORM TO AASHTO M302, GRADE 120.
PENN.	N.A.	THOUGHT TO HELP MITIGATE ASR; USED ACCORDING TO SPECIAL PROVISION
MASS.		USED IN ALL PRECAST MIXES AND SOME READY MIX PLANTS; USED FOR COST SAVINGS.
DELAWARE	EXPERIENCES OF OTHER STATE DOT'S.	SHALL CONFORM TO ASTM C989; USED INITIALLY BECAUSE OF LOW COST; NOW PRIMARILY TO MITIGATE ASR; DID GREATLY RETARD SET IN PAVING CONC18 HR. JOINT SAWING TIME NOT SEEN AS A PROBLEM, THOUGH. DELAWARE USED 22,000 TONS IN '93.
ALABAMA	N.A.	
KENTUCKY	N.A.	POSSIBLE FUTURE CONSIDERATION FOR USE
MISSOURI	N.A.	
MONTANA	N.A.	
NEW JERSEY	N.A.	
S. CAROLINA	N.A.	VERY LITTLE WORK EXPERIENCE WITH, ESPECIALLY IN PAVEMENT; SLAG "POLICY" DEVELOPED 1986; CONFORMANCE TO ASTM 989; MIX DESIGN SUBMITTAL BY CONTRACTOR REQUIRED
NEW HAMP.	N.A.	USED IN BRIDGE DECKS TO DECREASE PERMEABILITY AND RESIST REBAR CORROSION
ILLINOIS	N.A.	USE BETWEEN APRIL AND OCT. ONLY SHALL CONFORM TO ASTM 989 AND AASHTO M 302 GRADES 100 OR 120.

NOTE: ASTM C 989 AND AASHTO M 302-91 ARE THE (SAME) STANDARD SPECIFICATION FOR GROUND IRON BLAST-FURNACE SLAG FOR USE IN CONCRETE AND MORTARS.

NOTE: TYPE 1S CEMENT IS PORTLAND BLAST FURNACE SLAG CEMENT (BFS CONTENT BETWEEN 25% AND 70% BY WEIGHT. TYPE 1P CEMENT IS PORTLAND POZZOLAN CEMENT. POZZOLAN CONTENT 15 TO 40% BY WEIGHT. POZZOLAN MAY OR MAY NOT BE SLAG.

	CLASS A	CLASS A	TYPE B	ТҮРЕ В
LTRC LAB NO	C-2185	C-2189	C-2187	C-2188
DATE MIXED	06/03/98	06/23/98	06/09/98	06/17/98
TEMPERATURE OF CURING	50°F	60°F	50°F	60°F
TYPE AGGREGATE	LIMESTONE	LIMESTONE	GRAVEL	GRAVEL
WATER/CEMENT RATIO	0.43	0.43	0.40	0.40
BAG MIX (sks/yd)	6.0	6.0	5.8	5.8
CEMENT (lbs/yd)	395	395	382	382
SLAG (lbs/yd)	169	169	163	163
WATER (lbs/yd)	243	243	218	218
COARSE AGGREGATE (lbs/yd)	2039	2039	1979	1979
FINE AGGREGATE (lbs/yd)	1103	1103	1135	1135
DARAVAIR 1000 (oz/100ct)	2	2	1	1
WRDA W/ HTCOL (02/100ct)	3	3	4	4
AIR TEMPERATURE (°F)	73.0°	69.0°	73 0°	73.0°
CONCRETE TEMP. (°F at batch)	68.0°	68.0°	62.0°	69.0°
SLUMP (inches)	3.75"	3.25"	3.50"	2.25"
AIR CONTENT (percent)	4.2%	5.6%	4.8%	5.0%
UNIT WEIGHT (lbs/cu.ft.)	145.6 lbs	144.0 lbs	142.4 lbs	140.8 lbs
ASTM C 403 TIME OF SET				
initial	06 hrs 48 mins	05 hrs 27 mins	07 hrs 30 mins	06 hrs 06 mins
final	09 hrs 38 mins	07 hrs 28 mins	11 hrs 30 mins	08 hrs 22 mins
ASTM C 20				
ASTMC 59 7 DAY COMPRESSIVE STRENCTH				
cylinder #1 psi	3832	3385	2881	3100
cylinder #2 psi	3738	3891	3017	3168
cylinder #3 psi	3754	3774	2951	3185
average psi	3774	3683	2950	3184
28 DAY COMPRESSIVE STRENGTH				
cylinder #1 psi	5889	5622	5498	4734
cylinder #2 psi	5904	5595	4816	4422
cylinder #3 psi	5748	5528	5028	3349
average psi	5847	5582	5114	4168
ASTM C 78				
/ DAY FLEXURAL STRENGTH	611	590	650	546
beam #2 psi	644	560	566	579
beam #2 psi beam #3 psi	635	601	575	477
average psi	630	608	598	534
28 DAY FLEXURAL STRENGTH		~ ~ ~		
beam #1 psi	890	928	833	801
beam #2 psi	945	848	745	754
beam #3 psi	944	852	770	779
average psi	927	876	782	778
ASTM C 469				
28 DAY MODULES OF ELASTICITY				
cylinder #1	6201407	5152556	5550101	5562715
	5206802	5024100	5352101	5/15079
AVELAGE	5500892 5700104	5054190 5003973	5455594 5503848	5413978 5480867
cvlinder #1	3177174	3073013	5503040	3407002
cylinder #2	0.24	0.20	0.12	0.17
average	0.30	0.19	0.12	0.17
······································	0.27	0.19	0.13	0.17

MIXING SEQUENCE: (1) 3 MIN - COARSE+2/3 WATER+AEA., (2) 3 MIN - TOTAL COMPONENTS, (3) 3 MIN - REST, (4) 2 MIN - FINAL MIX

COMPONENTS OVEN DRIED AND CHILLED TO 50°F or 60°F PRIOR TO MIXING. SAMPLES CURED IN SEALED 50°F or 60°F ENVIRONMENT FOR 7 DAYS & THEN STORED IN 100%RH AT 73°F FOR FINAL CURING. CEMENT USED: HOLNAM TYPE I PORTLAND with a <u>30% SUBSTITUTION</u> of LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

29

SAMPLES CURED IN SEALED 50°F or 60°F ENVIRONMENT FOR 7 DAYS & THEN STORED IN 100%RH AT 73°F FOR FINAL CURING. CEMENT USED: HOLNAM TYPE I PORTLAND with a **30% SUBSTITUTION** of LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

MIXING SEQUENCE: (1) 3 MIN - COARSE+2/3 WATER+AEA., (2) 3 MIN - TOTAL COMPONENTS, (3) 3 MIN - REST, (4) 2 MIN - FINAL MIX

DESCRIPTION	CLASS A	CLASS A	TYPE B	ТҮРЕ В
LTRC LAB NO.	C-2185	C-2189	C-2187	C-2188
DATE MIXED	06/03/98	06/23/98	06/09/98	06/17/98
TEMPERATURE OF CURING	50°F	60°F	50°F	60°F
TYPE AGGREGATE	LIMESTONE	LIMESTONE	GRAVEL	GRAVEL
WATER/CEMENT RATIO	0.43	0.43	0.40	0.40
BAG MIX (sks/yd)	6.0	6.0	5.8	5.8
CEMENT (lbs/yd)	395	395	382	382
SLAG (lbs/yd)	169	169	163	163
WATER (lbs/yd)	243	243	218	218
COARSE AGGREGATE (lbs/yd)	2039	2039	1979	1979
FINE AGGREGATE (lbs/yd)	1103	1103	1135	1135
DARAVAIR 1000 (oz/100ct)	2	2	1	1
WRDA w/ HYCOL (oz/100ct)	3	3	4	4
AIR TEMPERATURE (°F)	73.0°	69.0°	73.0°	73.0°
CONCRETE TEMP.(°F at batch)	68.0°	68.0°	62.0°	69.0°
SLUMP (inches)	3.75"	3.25"	3.50"	2.25"
AIR CONTENT (percent)	4.2%	5.6%	4.8%	5.0%
UNIT WEIGHT (lbs/cu.ft.)	145.6 lbs	144.0 lbs	142.4 lbs	140.8 lbs
ASTM C 666 & ASTM C 215 <u>FREEZE and THAW</u> home #1 DE @ CVCL ES	80.4 @ 300	75.0 @ 300	161@105	34.0 @ 100
beam #2 DF @ CYCLES	89.4 @ 300 92.9 @ 300	73.9 @ 300	10.1 @ 105 30.1 @ 171	34.9 @ 190 28.0 @ 157
beam #2 DF @ CYCLES	92.9 @ 300 89.2 @ 300	72.9 @ 300	17.1 @ 171	28.0 @ 137
average DF @ CYCLES	90 5 @ 300	75.5 @ 300	34 2 @ 154	27 4 @ 152
ASTM C 157 <u>LENGTH CHANGE</u> (air storage) beam #1 (percent +/-) beam #2 (percent +/-)	-0.024 -0.033	-0.036 -0.030	-0.309 -0.296	-0.126 -0.121
average (percent +/-)	-0.029	-0.033	-0.202	-0.124
ASTM C 672 <u>SCALING</u> after 50 test cycles block #1 rating block #2 rating	5	0	5	3
average rating	5	0	5	3
interpretation	severe	no scaling	severe	moderate
ASTM C 944 ABRASION RESISTANCE		no stanny		
block #1 grams lost/cm 5	0.0214	0.0114	0.0143	0.0050
block #2 grams lost/cm 5	0.0143	0.0136	0.0122	0.0093
block #3 grams lost/cm 5	0.0143	0.0136	0.0172	0.0079
average grams lost/cm5	0.0167	0.0129	0.0146	0.0074
ASTM C 1202 CHLORIDE PENETRABILITY	16424 OW		2250.4400 ED 4 TE	2595 MODED ATE
core #1 coulombs/rating	1042/LUW 2401/MODEDATE	2220/MODERATE	3230/MODERATE	2383/MODERATE
core #2 coulombs/rating	2401/MODEKATE 1701/LOW	2330/MODERATE	2420/MODERATE	2011/MODERATE
core #4 coulombs/rating	1791/LOW	2304/WODEKATE 1624/LOW	24/0/MODERATE	2406/MODERATE
average coulombs/rating	1905/LOW	2146/MODERATE	3063/MODERATE	2470/WODERATE 2800/MODERATE
uverage couronitos/rating	1705/1010	2140/micDERATE	JUJUIUDERAIE	2007/HODERATE

5.8 BAG TYPE "B" PAVEMENT CONCRETE MIXES GRADE "B" GRAVEL @ AMBIENT TEMPERATURE (73°F) CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.40

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG	10% FLY ASH 15% SLAG
LTRC LAB NO	C-2144	C-2154	C-2156	C-2159	C-2160
DATE MIXED	07/01/97	11/13/97	11/17/97	12/09/97	12/11/97
CEMENT (lbs/yd)	545	463	381	273	409
SLAG (lbs/yd)	0	82	164	273	82
FLY ASH (lbs/yd)	0	0	0	0	54
WATER (lbs/yd)	218	218	218	218	218
COARSE AGGREGATE (lbs/yd)	1964	1964	1964	1964	1964
FINE AGGREGATE (lbs/yd)	1135	1135	1135	1135	1135
DARAVAIR 1000 (oz/100ct)	3	3	3	3	3
WRDA-19 (oz/100ct)	4	4	4	4	4
	700	<i>cc</i> 0	CT 0	700	C 00
AIR TEMPERATURE (°F)	70° 74°	66° 72°	6/°	/0°	68°
CONCRETE TEMPERATURE (F)	2.00"	1.00"	1.50"	2.50"	2.00"
AIR CONTENT (percent)	2.00	5.0%	5.5%	5.50	3.00 7.4%
UNIT WEIGHT (lbs/cu ft.)	141.6 lbs	140.0 lbs	140.8 lbs	138.0 lbs	138.0 lbs
	1110 100	11010 100	11010100	10010 100	10010 105
ASTM C 403					
TIME OF SET					
INITIAL	04 hrs 50 mins	05 hrs 05 mins	05 hrs 35 mins	05 hrs 11 mins	06 hrs 33 mins
FINAL	06 hrs 08 mins	06 hrs 27 mins	07 hrs 21 mins	07 hrs 42 mins	08 hrs 13 mins
ASTM C 39 7 DAY COMPRESSIVE STRENCTH					
cylinder #1 psi	3754	3073	3408	2480	2820
cylinder #2 psi	3734	3339	3679	2489	2829
cylinder #2 psi	3609	3195	3234	2307	2600
average nsi	3644	3202	3440	2517	2033
a conge par					
28 DAY COMPRESSIVE STRENGTH					
cylinder #1 psi	5066	4416	4904	4429	3521
cylinder #2 psi	4730	4321	4757	4491	3407
cylinder #3 psi	4547	4189	4788	4509	3709
average psi	4781	4309	4816	4476	3546
ASTM C 78					
7 DAY FLEXURAL STRENGTH					
beam #1 psi	568	565	615	513	467
beam #2 psi	545	549	603	496	461
beam #3 psi	530	605	592	490	493
average psi	548	573	603	500	474
28 DAY FLEXURAL STRENGTH	602	661	607	705	505
beam #1 psi	623	601	08/ 724	/05	595 521
beam #2 psi	653	641	734	686	504
average nsi	644	666	734 718	676	540
uteruge por	•	000		010	
ASTM C 469					
28 DAY MODULES OF ELASTICITY					
cylinder #1	5322988	4831975	5352596	4799747	4974733
cylinder #2	4936830	5286386	5516965	5247730	5229663
average	5129909	5059180	5434780	5023738	4974733
28 DAY POISSON'S RATIO					
cvlinder #1	0.0479452	0 2133713	0.0952381	0 2222222	0 1818182
cylinder #2	0.1118012	0.2384868	0.0702006	0.2406015	0.2666667
average	0.0798732	0.2259290	0.0827193	0.2314118	0.2242424
	-			-	

71

5.8 BAG TYPE "B" PAVEMENT CONCRETE MIXES GRADE "B" GRAVEL @ AMBIENT TEMPERATURE (73°F) CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.40

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG	10% FLY ASH 15% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) FLY ASH (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA-19 (oz/100ct)	C-2144 07/01/97 545 0 0 218 1964 1135 3 4	C-2154 11/13/97 463 82 0 218 1964 1135 3 4	C-2156 11/17/97 381 164 0 218 1964 1135 3 4	C-2159 12/09/97 273 273 0 218 1964 1135 3 4	C-2160 12/11/97 409 82 54 218 1964 1135 3 4
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	70° 74° 2.00" 5.4% 141.6 lbs	66° 72° 1.00" 5.0% 140.0 lbs	67° 69° 1.50" 5.5% 140.8 lbs	70° 68° 3.50" 6.4% 138.0 lbs	68° 71° 3.00" 7.4% 138.0 lbs
ASTM C 666 & ASTM C 215 <u>FREEZE and THAW</u> beam #1 DF @ CYCLES beam #2 DF @ CYCLES beam #3 DF @ CYCLES average DF @ CYCLES	41.8 @ 209 48.6 @ 243 33.8 @ 169 41.1 @ 207	36.2 @ 181 28.0 @ 140 24.0 @ 120 29.4 @ 147	40.8 @ 204 42.4 @ 212 39.2 @ 196 40.8 @ 204	27.0 @ 135 28.0 @ 140 29.2 @ 146 28.1 @ 140	19.4 @ 97 22.2 @ 111 17.8 @ 89 19.8 @ 99
ASTM C 157 <u>LENGTH CHANGE</u> (air storage) beam #1 (percent +/-) beam #2 (percent +/-) average (percent +/-)	-0.017 -0.019 -0.018	-0.075 -0.076 -0.076	-0.018 -0.017 -0.018	-0.021 -0.012 -0.016	-0.008 -0.054 -0.031
ASTM C 672 <u>SCALING</u> after 50 test cycles block #1 rating block #2 rating average rating interpretation	2 2 2 SLIGHT- MOD	4 4 4 MOD- SEVERE	4 5 4 MOD- SEVERE	4 4 4 MOD- SEVERE	4 3 3 MODERATE
ASTM C 944 <u>ABRASION RESISTANCE</u> block #1 grams lost/cm 5 block #2 grams lost/cm 5 block #3 grams lost/cm 5 average grams lost/cm5	0.0379 0.0307 0.0172 0.0286	0.0257 0.0250 0.0264 0.0257	0.0179 0.0250 0.0250 0.0226	0.0257 0.0272 0.0257 0.0262	0.0264 0.0214 0.0257 0.0245
ASTM C 1202 <u>CHLORIDE PENETRABILITY</u> core #1 coulombs/rating core #2 coulombs/rating core #3 coulombs/rating core #4 coulombs/rating average coulombs/rating	2417/MOD 3162/MOD 4070/HIGH 3455/MOD 3276/MOD	4066/HIGH 2913/MOD 5379/HIGH 2306/MOD 3666/MOD	2454/MOD 2511/MOD 2403/MOD 1447/LOW 2204/MOD	1243/LOW 3088/MOD 3086/MOD 3262/MOD 2670/MOD	1301/LOW 3189/MOD 3178/MOD 4612/HIGH 3070/MOD

SET TIMES: 5.8 Bag Type 'B' Pavement Mix (Grade B Gravel @ 73F)

FLEXURAL STRENGTH: 5.8 Bag Type 'B' Pavement Mix (Grade B Gravel @ 73F)

6.0 BAG CLASS "A" STRUCTURAL CONCRETE MIXES GRADE "A" LIMESTONE @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.43

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA w/ HYCOL (oz/100ct)	C-2082 04/25/96 564 0 243 2024 1103 2 3	C-2091 07/22/96 479 85 243 2024 1103 2 3	C-2092 07/31/96 395 169 243 2024 1103 2 3	C-2090 07/15/96 282 243 2024 1103 2 3
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	72° 75° 2.00" 4.9% 146.0 lbs	74° 76° 2.25" 4.3% 146.8 lbs	72° 76° 0.75" 3.8% 149.6 lbs	73° 75° 0.50" 3.0% 149.6 lbs
<u>TIME OF SET</u> INITIAL FINAL	04 hrs 22 mins 05 hrs 37 mins	03 hrs 58 mins 05 hrs 13 mins	03 hrs 47 mins 05 hrs 12 mins	04 hrs 17 mins 05 hrs 58 mins
7 DAY COMPRESSIVE STRENGTH cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	4201 4184 4307 4231	4668 4562 4485 4571	4901 5063 5036 5000	5856 5940 5584 5793
28 DAY COMPRESSIVE STRENGTH cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	5325 5300 5147 5257	6435 5563 5680 5892	6594 6214 5835 6214	7071 7021 6805 6966
7 DAY FLEXURAL STRENGTH beam #1 psi beam #2 psi beam #3 psi average psi	631 587 642 620	665 637 638 647	638 631 607 625	825 841 817 828
28 DAY FLEXURAL STRENGTH beam #1 psi beam #2 psi beam #3 psi average psi	854 756 731 780	753 704 767 741	894 810 980 894	780 840 846 822
28 DAY MODULES OF ELASTICITY cylinder #1 cylinder #2 average	5038727 5098357 5068542	5388475 5301519 5344997	5986260 5956097 5971178	5576352 6019432 5797892
28 DAY POISSON'S RATIO cylinder #1 cylinder #2 average	0.1988304 0.1952663 0.1970483	0.2584270 0.2122905 0.2353587	0.2294118 0.2232558 0.2263338	0.1886792 0.2268041 0.2077416

6.0 BAG CLASS "A" STRUCTURAL CONCRETE MIXES GRADE "A" LIMESTONE @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.43

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA w/ HYCOL (oz/100ct)	C-2082 04/25/96 564 0 243 2024 1103 2 3	C-2091 07/22/96 479 85 243 2024 1103 2 3	C-2092 07/31/96 395 169 243 2024 1103 2 3	C-2090 07/15/96 282 243 2024 1103 2 3
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	72° 75° 2.00" 4.9% 146.0 lbs	74° 76° 2.25" 4.3% 146.8 lbs	72° 76° 0.75" 3.8% 149.6 lbs	73° 75° 0.50" 3.0% 149.6 lbs
FREEZE and THAW beam #1 DF @ CYCLES beam #2 DF @ CYCLES beam #3 DF @ CYCLES average DF @ CYCLES	79 @ 300 83 @ 300 80 @ 300 81 @ 300	74 @ 300 75 @ 300 47 @ 236 65 @ 279	N/A 54 @ 268 36 @ 181 45 @ 224	55 @ 277 51 @ 256 48 @ 240 52 @ 258
LENGTH CHANGE (air storage) BEAM #1 (percent +/-) BEAM #2 (percent +/-) AVERAGE (percent +/-)	-0.025 -0.022 -0.024	-0.023 -0.013 -0.018	-0.021 -0.016 -0.019	-0.004 -0.016 -0.010
SCALING after 50 test cycles block #1 rating block #2 rating average rating interpretation	1 1 1 SLIGHT	1 1 1 SLIGHT	2 2 2 SLIGHT-MOD.	3 3 3 MODERATE
ABRASION RESISTANCE block #1 grams lost/cm ² block #2 grams lost/ cm ² block #3 grams lost/ cm ² average grams lost/ cm ²	0.0093 0.0143 0.0129 0.0122	0.0157 0.0193 0.0200 0.0183	0.0057 0.0050 0.0064 0.0057	0.0264 0.0293 0.0279 0.0279
CHLORIDE PENETRABILITY core #1 coulombs/rating core #2 coulombs/rating core #3 coulombs/rating core #4 coulombs/rating average coulombs/rating	4324/HIGH 4079/HIGH 3879/MOD 4235/HIGH 4129/HIGH	3424/MOD 3519/MOD 3180/MOD 2353/MOD 3119/MOD	1858/LOW 1917/LOW 1998/LOW 2288/MOD 2015/MOD	1191/LOW 1270/LOW 1493/LOW 1355/LOW 1327/LOW

SET TIMES: 6.0 Bag Class 'A' Structural Mix (Grade A Limestone @ 73F)

COMPRESSIVE STRENGTH: 6.0 Bag Class 'A' Structural Mix (Grade A Limestone @ 73F)

6.5 BAG CLASS "AA" STRUCTURAL CONCRETE MIXES GRADE "A" GRAVEL @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.43

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA w/ HYCOL (oz/100ct)	C-2073 02/08/96 611 0 263 1879 1066 2 3	C-2074 02/13/96 519 92 263 1879 1066 2 3	C-2076 04/18/96 428 183 263 1879 1066 2 3	C-2083 05/02/96 306 263 1879 1066 2 3
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.) TIME OF SET	66° 74° 3.50" 5.8% 138.0 lbs	65° 72° 3.75" 6.0% 138.8 lbs	73° 76° 3.50" 5.9% 139.2 lbs	65° 69° 3.50" 4.6% 141.6 lbs
INITIAL FINAL	05 hrs 53 mins 07 hrs 07 mins	05 hrs 00 mins 06 hrs 27 mins	04 hrs 52 mins 06 hrs 27 mins	04 hrs 48 mins 06 hrs 20 mins
7 DAY COMPRESSIVE STRENGTH cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	3353 3377 3316 3349	3437 3479 3300 3405	1714* 3283 3299 3291	3400 3508 3401 3436
28 DAY COMPRESSIVE STRENGTH cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	3957 3987 3901 3948	4538 4373 4578 4496	4729 4923 4389 4681	5271 5218 5320 5270
<u>7 DAY FLEXURAL STRENGTH</u> beam #1 psi beam #2 psi beam #3 psi average psi	534 536 536 535	591 571 579 580	501 557 591 550	572 531 584 563
28 DAY FLEXURAL STRENGTH beam #1 psi beam #2 psi beam #3 psi average psi	606 574 553 578	632 725 695 684	756 733 691 726	691 720 720 710
28 DAY MODULES OF ELASTICITY cylinder #1 cylinder #2 average	3882803 4084662 3983733	4916944 4873984 4895464	5221920 5199510 5210715	4927092 4948103 4937598
28 DAY POISSON'S RATIO cylinder #1 cylinder #2 average	0.1279070 0.1992136 0.1635603	0.0555556 0.0821918 0.0688737	0.0811594 0.0977778 0.0894686	0.1511628 0.1136364 0.1323996

(*) denotes test not included in the overall average due to abnormal failure.

6.5 BAG CLASS "AA" STRUCTURAL CONCRETE MIXES GRADE "A" GRAVEL @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.43

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO. DATE MIXED CEMENT (Ibs/yd) SLAG (Ibs/yd) WATER (Ibs/yd) COARSE AGGREGATE (Ibs/yd) FINE AGGREGATE (Ibs/yd) DARAVAIR 1000 (oz/100ct) WRDA w/ HYCOL (oz/100ct)	C-2073 02/08/96 611 0 263 1879 1066 2 3	C-2074 02/13/96 519 92 263 1879 1066 2 3	C-2076 04/18/96 428 183 263 1879 1066 2 3	C-2083 05/02/96 306 305 263 1879 1066 2 3
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	66° 74° 3.50" 5.8% 138.0 lbs	65° 72° 3.75" 6.0% 138.8 lbs	73° 76° 3.50" 5.9% 139.2 lbs	65° 69° 3.50" 4.6% 141.6 lbs
FREEZE and THAW beam #1 DF @ CYCLES beam #2 DF @ CYCLES beam #3 DF @ CYCLES average DF @ CYCLES	70.0 @ 300.0 33.0 @ 165.0 42.4 @ 212.0 48.5 @ 225.7	55.4 @ 277 67.0 @ 300 40.0 @ 200 54.1 @ 259	28.8 @ 144 27.8 @ 139 51.0 @ 255 35.9 @ 179	44.6 @ 223 48.6 @ 243 37.4 @ 187 43.5 @ 218
LENGTH CHANGE (air storage) beam #1 (percent +/-) beam #2 (percent +/-) average (percent +/-)	-0.012 -0.004 -0.008	-0.002 -0.021 -0.011	-0.031 -0.033 -0.032	-0.018 -0.023 -0.020
<u>SCALING</u> after 50 test cycles block #1 rating block #2 rating average rating interpretation	4 4 4 MOD/SEV	5 3 4 MOD/SEV	4 4 4 MOD/SEV	4 4 4 MOD/SEV
ABRASION RESISTANCE block #1 grams lost/ cm ² block #2 grams lost/ cm ² block #3 grams lost/ cm ² average grams lost/ cm ²	0.0143 0.0143 0.0143 0.0143	0.0186 0.0186 0.0207 0.0193	0.0220 0.0200 0.0160 0.0190	0.0164 0.0179 0.0229 0.0191
CHLORIDE PENETRABILITY core #1 coulombs/rating core #2 coulombs/rating core #3 coulombs/rating core #4 coulombs/rating average coulombs/rating	4674/HIGH 4102/HIGH 6682/HIGH 4984/HIGH 5110/HIGH	3819/MODERATE 2906/MODERATE 3180/MODERATE 3089/MODERATE 3248/MODERATE	2561/MODERATE 3155/MODERATE 2757/MODERATE 2703/MODERATE 2794/MODERATE	1384/LOW 1186/LOW 1395/LOW 1456/LOW 1355/LOW

 $(\ensuremath{^*})$ denotes test not included in the overall average due to abnormal failure.

SET TIMES: 6.5 Bag Class 'AA' Structural Mix (Grade A Gravel @ 73F)

5.4 BAG TYPE "B" PAVEMENT CONCRETE MIXES GRADE "B" LIMESTONE @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.40

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG	10% FLY ASH 15% SLAG
LTRC LAB NO. DATE MIXED CEMENT (Ibs/yd) SLAG (Ibs/yd) FLY ASH (Ibs/yd) WATER (Ibs/yd) COARSE AGGREGATE (Ibs/yd) FINE AGGREGATE (Ibs/yd) DARAVAIR 1000 (oz/100ct) WRDA-19 (oz/100ct)	C-2093 09/10/96 508 0 203 2116 1163 3 12	C-2095 09/17/96 431 76 0 203 2116 1163 3 12	C-2096 09/24/96 356 152 0 203 2116 1163 3 12	C-2102 02/20/97 254 254 0 203 2116 1163 3 12	C-2103 03/11/97 381 76 51 203 2116 1163 3 12
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	74° 75° 2.00" 3.8% 151.6 lbs	72° 78° 1.50" 3.9% 151.6 lbs	74° 68° 2.75" 3.9% 151.2 lbs	72° 75° 1.50" 3.0% 150.8 lbs	71° 76° 2.75" 3.2% 148.8 lbs
ASTM C 403 <u>TIME OF SET</u> initial final	03 hrs 49 mins 04 hrs 53 mins	03 hrs 32 mins 04 hrs 33 mins	04 hrs 18 mins 05 hrs 37 mins	04 hrs 10 mins 05 hrs 57 mins	04 hrs 32 mins 06 hrs 07 mins
ASTM C 39 <u>7 DAY COMPRESSIVE STRENGTH</u> cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	5018 4923 5063 5001	5881 5110 5447 5480	4880 4839 4856 4858	6056 6361 6219 6212	4716 4652 4695 4688
28 DAY COMPRESSIVE STRENGTH cylinder #1 psi cylinder #2 psi cylinder #3 psi average psi	6183 6125 6081 6130	6113 5701 5645 5820	5769 5604 5696 5690	6883 7300 6696 6960	5858 6369 5904 6044
ASTM C 78 <u>7 DAY FLEXURAL STRENGTH</u> beam #1 psi beam #2 psi beam #3 psi average psi	806 738 808 784	719 721 762 734	761 840 763 788	852 851 818 840	713 717 775 735
28 DAY FLEXURAL STRENGTH beam #1 psi beam #2 psi beam #3 psi average psi	847 845 818 837	841 791 786 806	905 905 824 878	905 866 894 889	725 785 843 784
ASTM C 469 <u>28 DAY MODULES OF ELASTICITY</u> cylinder #1 cylinder #2 average	6021988 5869812 5945900	5541828 5487916 5514872	5718631 5434445 5576538	6331081 6288407 6309744	6038550 6148388 6093469
28 DAY POISSON'S RATIO cylinder #1 cylinder #2 average	0.2857143 0.2558140 0.2707641	0.2083333 0.2559524 0.2321428	0.1842752 0.1744186 0.1793469	0.2021277 0.1914894 0.1968085	0.2228916 0.2261905 0.224541

5.4 BAG TYPE "B" PAVEMENT CONCRETE MIXES GRADE "B" LIMESTONE @ AMBIENT TEMPERATURE 73°F CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG WATER / CEMENT RATIO = 0.40

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG	10% FLY ASH 15% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) FLY ASH (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA-19 (oz/100ct)	C-2093 09/10/96 508 0 203 2116 1163 3 12	C-2095 09/17/96 431 76 0 203 2116 1163 3 12	C-2096 09/24/96 356 152 0 203 2116 1163 3 12	C-2102 02/20/97 254 254 0 203 2116 1163 3 12	C-2103 03/11/97 381 76 51 203 2116 1163 3 12
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	74° 75° 2.00" 3.8% 151.6 lbs	72° 78° 1.50" 3.9% 151.6 lbs	74° 68° 2.75" 3.9% 151.2 lbs	72° 75° 1.50" 3.0% 150.8 lbs	71° 76° 2.75" 3.2% 148.8 lbs
ASTM C 666 & ASTM C 215 <u>FREEZE and THAW</u> beam #1 DF @ CYCLES beam #2 DF @ CYCLES beam #3 DF @ CYCLES average DF @ CYCLES	19 @ 96 17 @ 86 19 @ 93 18 @ 92	24 @ 118 26 @ 130 13 @ 66 21 @ 105	24 @ 121 20 @ 102 24 @ 118 23 @ 114	69 @ 300 63 @ 300 60 @ 300 64 @ 300	29 @ 143 30 @ 149 34 @ 169 31 @ 154
ASTM C 157 <u>LENGTH CHANGE</u> (air storage) beam #1 (percent +/-) beam #2 (percent +/-) average (percent +/-)	-0.018 -0.017 -0.018	-0.015 -0.018 -0.016	-0.003 -0.025 -0.014	-0.012 -0.012 -0.012	-0.021 -0.023 -0.022
ASTM C 672 <u>SCALING</u> after 50 test cycles block #1 rating block #2 rating average rating interpretation	1 2 2 SLIGHT/MOD	3 3 3 MODERATE	2 3 3 MODERATE	2 1 2 SLIGHT/MOD	1 2 2 SLIGHT/MOD
ASTM C 944 <u>ABRASION RESISTANCE</u> block #1 grams lost/ cm ² block #2 grams lost/ cm ² block #3 grams lost/ cm ² average grams lost/ cm ²	0.0172 0.0172 0.0164 0.0169	0.0172 0.0200 0.0114 0.0162	0.0272 0.0222 0.0236 0.0243	0.0207 0.0200 0.0229 0.0212	0.0214 0.0222 0.0200 0.0212
ASTM C 1202 <u>CHLORIDE PENETRABILITY</u> core #1 coulombs/rating core #2 coulombs/rating core #4 coulombs/rating average coulombs/rating	3760/MOD 2500/MOD 3132/MOD 3209/MOD 3150/MOD	1544/LOW 2239/MOD 1648/LOW 1662/LOW 1773/LOW	1437/LOW 1650/LOW 1348/LOW 1563/LOW 1500/LOW	996/V.LOW 1045/LOW 997/V.LOW 997/V.LOW 1009/LOW	2617/MOD 2446/MOD 2977/MOD 2555/MOD 2649/MOD

SET TIMES: 5.4 Bag Type 'B' Pavement Mix (Grade B Limestone @ 73F)

6.0 BAG CLASS "A" STRUCTURAL CONCRETE MIXES. WATER / CEMENT RATIO = 0.43. GRADE "A" **LIMESTONE**. COMPONENTS DRIED AND CHILLED TO 40°F PRIOR TO MIXING. SAMPLES CURED IN SEALED 40°F ENVIRONMENT.

CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
	G 0170	G 0100	0.0156	G 0170
LIRC LAB NO.	C-2173	C-2180	C-21/6	C-21/0
	03/17/98	04/21/98	04/07/98	03/05/98
CEMENT (IDS/yd)	564	479	395	282
SLAG (lbs/yd)	0	85	169	282
WATER (Ibs/yd)	243	243	243	243
COARSE AGGREGATE (Ibs/yd)	2039	2039	2039	2039
FINE AGGREGATE (Ibs/yd)	1103	1103	1103	1103
DARAVAIR 1000 (oz/100ct)	2	2	2	2
WRDA W/ HYCOL (0Z/100ct)	3	3	3	3
AIR TEMPERATURE (°F)	63°	69°	69°	66°
CONCRETE TEMPERATURE (°F)	53°	61°	62°	48°
SLUMP (inches)	2.50"	3.50"	2.75"	1.00"
AIR CONTENT (percent)	5.6%	5.6%	5.5%	3.3%
UNIT WEIGHT (lbs/cu.ft.)	143.2 lbs	144.4 lbs	144.0 lbs	136.8 lbs
ASTM C 403 TIME OF SET				
initial	07 hrs 00 mins	09 hrs 09 mins	08 hrs 30 mins	08 hrs 36 mins
final	11 hrs 11 mins	14 hrs 52 mins	14 hrs 40 mins	16 hrs 15 mins
ASTM C 39				
7 DAY COMPRESSIVE STRENGTH				
cylinder #1 psi	3337	3230	3317	1484
cylinder #2 psi	3239	3422	3396	2258
cylinder #3 psi	3391	3462	3381	2419
average psi	3322	3371	3365	2054
28 DAY COMPRESSIVE STRENGTH				
cylinder #1 psi	4268	4607	4766	4870
cylinder #2 psi	4382	4380	4520	5179
cylinder #3 psi	3390	4708	3907	5908
average psi	4013	4565	4398	5319
56 DAY COMPRESSIVE STRENGTH				
cylinder #1 psi	5067	5772	5293	6859
cylinder #2 psi	5084	5741	5430	6029
cylinder #3 psi	4649	4930	3096	6752
average psi	4934	5481	4603	6547
ASTM C 78				
7 DAY FLEXURAL STRENGTH				
beam #1 psi	477	620	501	512
beam #2 psi	616	602	493	484
beam #3 psi	471	634	475	473
average psi	422	619	490	490
28 DAY FLEXURAL STRENGTH				
beam #1 psi	665	641	680	885
beam #2 psi	671	586	741	865
beam #3 psi	671	635	774	903
average psi	669	621	732	884
ASTM C 469				
28 DAY MODULES OF ELASTICITY				
cylinder #1	5072420	4633297	4574719	5078395
cylinder #2	N/A	4552163	4588500	5398227
average	5072420	4592730	4581610	5238311
28 DAY POISSON'S RATIO				
cylinder #1	0.17	0.20	0.19	0.22
cylinder #2	N/A	0.22	0.20	0.22
average	0.17	0.21	0.19	0.22
_				

6.0 BAG CLASS "A" STRUCTURAL CONCRETE MIXES. WATER / CEMENT RATIO = 0.43. GRADE "A" **LIMESTONE**. COMPONENTS DRIED AND CHILLED TO 40°F PRIOR TO MIXING. SAMPLES CURED IN SEALED 40°F ENVIRONMENT.

CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO	C-2173	C-2180	C-2176	C-2170
DATE MIXED	03/17/98	04/21/98	04/07/98	03/05/98
CEMENT (lbs/vd)	564	479	395	282
SLAG (lbs/yd)	0	85	169	282
$W \Delta TER (lbs/yd)$	243	243	243	202
COARSE AGGREGATE (lbs/yd)	243	243	2039	243
EINE AGGREGATE (lbs/yd)	1103	1103	1103	1103
DARAVAIR 1000 ($o_7/100$ ct)	2	2	2	2
WPDA $w/WCOL$ (oz/100ct)	2	2	2	2
WKDA W/ IIICOL (02/100ct)	5	5	5	5
AIR TEMPERATURE (°E)	63°	69°	69°	66°
CONCRETE TEMPERATURE (°F)	53°	61°	62°	48°
SI LIMP (inches)	2 50"	3 50"	2 75"	1.00"
AIP CONTENT (parcent)	2.50	5.50	2.75	2 20/
LINIT WEICHT (he/on ft)	1.42 Q lbc	144 4 lbs	144.0 lbc	126.9 lbs
UNIT WEIGHT (IDS/CU.II.)	145.2 108	144.4 108	144.0 108	130.8 108
ASTM C 666 & ASTM C 215				
EDEEZE and THAW				
harm #1 DE @ CVCLES	95 0 @ 200	100.0 @ 200	70.5 @ 200	55 2 @ 276
beam #1 DF @ CYCLES	85.0 @ 300	100.0 @ 300	79.5 @ 500	55.2 @ 276
beam #2 DF @ CYCLES	94.7 @ 300	96.1 @ 300	94.2 @ 300	52.0 @ 265
beam #3 DF @ CYCLES	93.4 @ 300	100.0 @ 300	93.5 @ 300	63.0 @ 300
average DF @ CYCLES	90.9 @ 300	98.7 @ 300	89.0 @ 300	56.9 @ 280
ASTM C 157				
ASTM C 157				
LENGTH CHANGE (air storage)	0.020	0.021	0.024	0.021
beam #1 (percent +/-)	-0.038	-0.031	-0.034	-0.021
beam #2 (percent +/-)	-0.038	-0.029	-0.038	-0.012
average (percent +/-)	-0.038	-0.030	-0.036	-0.016
A STM C 672				
ASTM C 072				
SCALING after 50 test cycles	4	2	F	~
block #1 rating	4	2	5	5
block #2 rating	5	4	5	5
average rating		J	3	5 CEVERE
interpretation	MODERATE to	MODERATE	SEVERE	SEVERE
	SEVERE			
ASTM C 944				
ADDASION DESISTANCE				
hlock #1 grome loct/ gm ²	0.020	0.025	0.010	0.014
block #1 grams lost/ cm ²	0.029	0.023	0.010	0.014
block #2 grams lost/ cm	0.021	0.025	0.019	0.015
block #5 grams lost/ cm	0.028	0.026	0.013	N/A
average grams lost/ cm	0.020	0.025	0.014	0.015
ASTM C 1202				
CUI ODIDE DENETDADII ITV				
chilokide reneikABiliti	1077 1.:	1207/1-:1-	2512/m - Janeta	2222/m = 1
core #1 coulombs/rating	48 / //nign	4527/nign	2515/moderate	2232/III0derate
core #2 coulombs/rating	46/4/nign	51/5/nign	3410/moderate	1805/10W
core #3 coulombs/rating	4235/high	5205/high	3348/mioderate	2153/moderate
core #4 coulombs/rating	4324/high	N/A	N/A	N/A
average coulombs/rating	4528/high	4902/high	3092/moderate	2083/moderate

50% SLAG

PSI

SET TIMES: 6.0 Bag Class 'A' Structural Mix (Grade A Limestone @ 40F)

5.8 BAG TYPE "B" PAVEMENT CONCRETE MIXES. WATER / CEMENT RATIO = 0.40. GRADE "B" GRAVEL. COMPONENTS DRIED AND CHILLED TO 40°F PRIOR TO MIXING. SAMPLES CURED IN SEALED 40°F ENVIRONMENT.

CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

DESCRIPTION	REFERENCE	15% SLAG	30% SI AG	50% SLAG
DESCRIPTION	REFERENCE	13 /0 SLAG	50 /0 SLAG	5070 SLAG
LTRC LAB NO.	C-2143	C-2163	C-2172	C-2169
DATE MIXED	06/25/97	01/21/98	03/10/98	02/25/98
CEMENT (lbs/yd)	545	463	382	272
SLAG (lbs/yd)	0	82	163	272
WATER (lbs/yd)	218	218	218	218
COARSE AGGREGATE (lbs/yd)	1979	1979	1979	1979
FINE AGGREGATE (lbs/yd)	1135	1135	1135	1135
DARAVAIR 1000 (oz/100ct)	1	1	1	1
WRDA w/ HYCOL (oz/100ct)	4	4	4	4
AIR TEMPERATURE (°F)	69°	65°	66°	68°
CONCRETE TEMPERATURE (°F)	60°	57°	55°	57°
SLUMP (inches)	2.00"	3.50"	3.00"	3.50"
AIR CONTENT (percent)	5.4%	5.8%	4.9%	5.8%
UNIT WEIGHT (lbs/cu.ft.)	141.2 lbs	139.6 lbs	142.0 lbs	142.0 lbs
ASTM C 403 <u>TIME OF SET</u>				
initial	06 hrs 45 mins	10 hrs 17 mins	10 hrs 55 mins	10 hrs 42 mins
final	10 hrs 55 mins	13 hrs 48 mins	16 hrs 54 mins	15 hrs 37 mins
AS INCOSY 7 DAY COMPRESSIVE STRENGTH				
cylinder #1 psi	3380	2677	2258	1823
cylinder #2 psi	3474	2710	2305	1772
cylinder #2 psi	3317	2710	2303	1830
average nei	3300	2724	2325	1808
28 DAV COMPRESSIVE STRENGTH	5550	2704	2275	1000
28 DAT COMPRESSIVE STRENGTH	1677	1407*	3347	3167
cylinder #2 psi	4077	2870	2455	2171
cylinder #2 psi	4338	3070	2501	2061
cynnder #5 psi	4/82	3941	3301	3001
average psi	4000	3900	3433	5155
<u>30 DAY COMPRESSIVE STRENGTH</u>	NT/A	NI/A	2012	2022
cylinder #1 psi	N/A	IN/A	3913	3922
cylinder #2 psi			4085	4005
cylinder #3 psi			3970	4002
average psi			3990	5970
ASTM C 78				
7 DAY FLEXURAL STRENGTH				
beam #1 psi	594	568	561	408
beam #2 psi	565	553	538	411
beam #3 psi	575	529	484	441
average psi	578	550	528	420
28 DAY FLEXURAL STRENGTH				
beam #1 psi	561	683	559	636
beam #2 psi	562	731	597	651
beam #3 psi	641	713	598	627
average psi	588	709	585	638
ASTM C 460				
28 DAY MODULES OF ELASTICITY				
cylinder #1	5504202	4100022	4465071	1052826
cylinder #1	574505	4109925	4403071	4052650
	541/595	2579217	4008470	3992119
	3303649	35/631/	4200774	4022008
28 DAY PUISSON'S KATIO	0.12	0.22	0.40	0.12
cylinder #1	0.12	0.23	0.49	0.13
cylinder #2	0.17	0.54	0.14	0.10
average	0.14	0.38	0.32	0.11
	IL			

5.8 BAG TYPE "B" PAVEMENT CONCRETE MIXES. WATER / CEMENT RATIO = 0.40.

GRADE "B" GRAVEL. COMPONENTS DRIED AND CHILLED TO 40°F PRIOR TO MIXING. SAMPLES CURED IN SEALED 40°F ENVIRONMENT. CEMENT USED: HOLNAM TYPE I PORTLAND and LONESTAR AUCEM GRANULATED GROUND BLAST FURNACE SLAG

DESCRIPTION	REFERENCE	15% SLAG	30% SLAG	50% SLAG
LTRC LAB NO. DATE MIXED CEMENT (lbs/yd) SLAG (lbs/yd) WATER (lbs/yd) COARSE AGGREGATE (lbs/yd) FINE AGGREGATE (lbs/yd) DARAVAIR 1000 (oz/100ct) WRDA w/ HYCOL (oz/100ct)	C-2143 06/25/97 545 0 218 1979 1135 1 4	C-2163 01/21/98 463 82 218 1979 1135 1 4	C-2172 03/10/98 382 163 218 1979 1135 1 4	C-2169 02/25/98 272 272 218 1979 1135 1 4
AIR TEMPERATURE (°F) CONCRETE TEMPERATURE (°F) SLUMP (inches) AIR CONTENT (percent) UNIT WEIGHT (lbs/cu.ft.)	69° 60° 2.00" 5.4% 141.2 lbs	65° 57° 3.50" 5.8% 139.6 lbs	66° 55° 3.00" 4.9% 142.0 lbs	68° 57° 3.50" 5.8% 142.0 lbs
ASTM C 666 & ASTM C 215 <u>FREEZE and THAW</u> beam #1 DF @ CYCLES beam #2 DF @ CYCLES beam #3 DF @ CYCLES average DF @ CYCLES	43.0 @ 215 19.0 @ 95 28.6 @ 143 30.2 @ 151	31.6 @ 158 32.4 @ 162 31.4 @ 157 31.8 @ 159	56.8 @ 284 30.0 @ 150 13.4 @ 67 33.4 @ 167	49.4 @ 247 48.8 @ 244 49.2 @ 246 49.1 @ 246
ASTM C 157 <u>LENGTH CHANGE</u> (air storage) beam #1 (percent +/-) beam #2 (percent +/-) average (percent +/-)	-1.814 -1.602 -1.708	-0.834 -0.786 -0.810	+0.188 +0.064 +0.126	+0.103 +0.764 + 0.434
ASTM C 672 <u>SCALING</u> after 50 test cycles block #1 rating block #2 rating average rating interpretation	3 3 3 MODERATE	3 4 3 MODERATE	5 5 5 SEVERE	4 5 4 MOD/SEVERE
ASTM C 944 <u>ABRASION RESISTANCE</u> block #1 grams lost/ cm ² block #2 grams lost/ cm ² block #3 grams lost/ cm ² average grams lost/ cm ²	0.0100 0.0207 0.0129 0.0145	0.0185 0.0229 0.0114 0.0176	0.0107 0.0193 0.0207 0.0169	0.0207 0.0286 0.0336 0.0276
ASTM C 1202 <u>CHLORIDE PENETRABILITY</u> core #1 coulombs/rating core #2 coulombs/rating core #3 coulombs/rating core #4 coulombs/rating average coulombs/rating	4329/HIGH 4714/HIGH 4868/HIGH 4877/HIGH 4697/HIGH	8564/HIGH 7216/HIGH 8503/HIGH 1131/LOW 6354/HIGH	3034/MODERATE 4324/HIGH 4534/HIGH 1709/LOW 3400/MODERATE	5629/HIGH 6513/HIGH 7470/HIGH 1149/LOW 5190/HIGH

SET TIMES: 5.8 Bag Type 'B' Pavement Mix (Grade B Gravle @ 40F)

